# organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Malcolm J. Todd and William T. A. Harrison\*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

#### **Key indicators**

Single-crystal X-ray study T = 120 KMean  $\sigma$ (C–C) = 0.003 Å R factor = 0.030 wR factor = 0.068 Data-to-parameter ratio = 19.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# Propane-1,2-diaminium selenite monohydrate

The title compound,  $C_3H_{12}N_2^{2+} \cdot \text{SeO}_3^{2-} \cdot \text{H}_2\text{O}$ , contains a network of propane-1,2-diaminium ( $C_3H_{12}N_2^{2+}$ ) cations, selenite ( $\text{SeO}_3^{2-}$ ) anions and water molecules. The crystal packing involves  $N-H\cdots O$  [average  $H\cdots O = 1.89$  Å,  $N-H\cdots O = 165^\circ$  and  $N\cdots O = 2.777$  (3) Å] and  $O-H\cdots O$  hydrogen bonds, resulting in a layered structure.

Received 15 April 2005 Accepted 22 April 2005 Online 7 May 2005

### Comment

The title compound, (I), was prepared as part of our ongoing studies of hydrogen-bonding interactions in the crystal structures of (protonated) amine phosphates (Demir *et al.*, 2003), phosphites (Harrison, 2003), selenites (Ritchie & Harrison, 2003) and arsenates (Lee & Harrison, 2003*a,b,c*; Wilkinson & Harrison, 2004).



The asymmetric unit of (I) contains one  $C_3H_{12}N_2^{2+}$  cation, one SeO<sub>2</sub><sup>2-</sup> anion and a water molecule (Fig. 1). The geometric parameters for the organic cation are unexceptional (Lee & Harrison, 2003*a*). This species is chiral (C1 has *S* configuration in the selected asymmetric unit), but crystal symmetry generates a 50:50 mix of enantiomers, consistent



© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Asymmetric unit of (I), showing 50% displacement ellipsoids (arbitrary spheres for H atoms). Hydrogen bonds are indicated by dashed lines.



Figure 2

Detail of a hydrogen-bonded selenite/water chain in (I). Symmetry codes are as in Table 2 [additionally: (v) x, 1 + y, z]. Hydrogen bonds are indicated by dashed lines.



#### Figure 3

[010] projection of the packing for (I). C-bound H atoms have been omitted for clarity and hydrogen bonds are indicated by dashed lines.

with the racemic starting material. The selenite group in (I) shows its standard (Lee & Harrison, 2003) pyramidal geometry (Table 1) [average Se-O = 1.687 (2) Å], with the Se atom displaced from the plane of its three attached O atoms by 0.7213 (12) Å.

As well as electrostatic attractions, the component species in (I) interact by means of a network of  $N-H\cdots O$  and  $O-H\cdots O$  hydrogen bonds (Table 2). The selenite anions and water molecules are linked into a polymeric chain in the [010] direction by hydrogen bonds (Fig. 2). The organic species interacts with the selenite/water chains by way of  $N-H\cdots O$ hydrogen bonds (Table 2). All six of the  $-NH_3^+$  H atoms are involved in these links [mean  $H\cdots O = 1.89$  Å,  $N-H\cdots O =$  $165^\circ$  and  $N\cdots O = 2.777$  (3) Å]. These interactions result in (101) selenite/water/aminium layers sandwiched between the carbon backbones of the organic groups (Fig. 3), which themselves interact by way of van der Waals forces.

Propane-1,2-diaminium hydrogenarsenate monohydrate,  $C_3H_{12}N_2^{2+}$ ·HAsO<sub>4</sub><sup>2-</sup>·H<sub>2</sub>O (Lee & Harrison, 2003*a*), has an

equivalent stoichiometry to (I). As might be expected, where the oxo anion has hydrogen-bonding capability (*i.e.* as As-OH···O links), a quite different overall structure arises. An interesting difference also arises for the organic cation; in (I), the  $-NH_3^+$  and  $-CH_3$  groups are *trans* about their linking C-C bond (Table 1), whereas in the hydrogenarsenate, they are *gauche* [C-C-C-N = -54.09 (18)°].

#### Experimental

An aqueous 0.5 M propane-1,2-diamine solution (10 ml) was added to aqueous 0.5 M H<sub>2</sub>SeO<sub>3</sub> solution (10 ml, dissolved SeO<sub>2</sub>) to result in a clear solution. A mass of colourless platy crystals of (I), with a palepink tinge arising from a surface coating, grew as the water evaporated over the course of a few days.

#### Crystal data

| $C_{3}H_{12}N_{2}^{2+}\cdot SeO_{3}^{2-}\cdot H_{2}O$ | $D_x = 1.778 \text{ Mg m}^{-3}$           |
|-------------------------------------------------------|-------------------------------------------|
| $M_r = 221.12$                                        | Mo $K\alpha$ radiation                    |
| Monoclinic, $P2/n$                                    | Cell parameters from 1941                 |
| u = 11.5494 (7)  Å                                    | reflections                               |
| p = 6.1399 (4) Å                                      | $\theta = 2.9-27.5^{\circ}$               |
| r = 11.6601 (6)  Å                                    | $\mu = 4.51 \text{ mm}^{-1}$              |
| $\beta = 92.213 \ (3)^{\circ}$                        | T = 120 (2) K                             |
| V = 826.23 (8) Å <sup>3</sup>                         | Plate, colourless                         |
| Z = 4                                                 | $0.12 \times 0.10 \times 0.02 \text{ mm}$ |
|                                                       |                                           |

1617 reflections with  $I > 2\sigma(I)$ 

 $R_{\rm int} = 0.044$ 

 $\theta_{\rm max} = 27.5^{\circ}$ 

 $\begin{array}{l} h = -12 \rightarrow 15 \\ k = -7 \rightarrow 7 \end{array}$ 

 $l = -15 \rightarrow 15$ 

### Data collection

Nonius KappaCCD diffractometer  $\omega$  and  $\varphi$  scans Absorption correction: multi-scan (*SADABS*; Bruker, 2003)  $T_{\min} = 0.613$ ,  $T_{\max} = 0.915$ 8108 measured reflections 1882 independent reflections

#### Refinement

| Refinement on $F^2$             | $w = 1/[\sigma^2(F_o^2) + (0.0274P)^2]$                    |
|---------------------------------|------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.030$ | + 0.5437P]                                                 |
| $wR(F^2) = 0.068$               | where $P = (F_0^2 + 2F_c^2)/3$                             |
| S = 1.07                        | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| 1882 reflections                | $\Delta \rho_{\rm max} = 0.98 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 95 parameters                   | $\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$ |
| H-atom parameters constrained   | Extinction correction: SHELXL97                            |
|                                 | Extinction coefficient: 0.0026 (7)                         |

## Table 1

Selected geometric parameters (Å, °).

| Se1-01            | 1.673 (2) | Se1-O2      | 1.7052 (18) |
|-------------------|-----------|-------------|-------------|
| N1 - C1 - C2 - N2 | 55.2 (3)  | C3-C1-C2-N2 | 176.9 (2)   |

## Table 2

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                    | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdot$ | ··A |
|-------------------------------------|------|-------------------------|--------------|---------------|-----|
| $N1 - H1 \cdots O2^{i}$             | 0.91 | 1.88                    | 2.779 (3)    | 171           |     |
| $N1 - H2 \cdots O1^{ii}$            | 0.91 | 1.81                    | 2.701 (3)    | 165           |     |
| $N1 - H3 \cdots O2$                 | 0.91 | 2.00                    | 2.835 (3)    | 152           |     |
| $N2-H4\cdots O4^{iii}$              | 0.91 | 1.91                    | 2.802 (3)    | 165           |     |
| N2-H5···O3                          | 0.91 | 1.87                    | 2.777 (3)    | 173           |     |
| $N2 - H6 \cdot \cdot \cdot O2^{ii}$ | 0.91 | 1.88                    | 2.766 (3)    | 164           |     |
| O4−H13···O3                         | 0.88 | 1.96                    | 2.840 (3)    | 178           |     |
| $O4-H14\cdots O1^{iv}$              | 0.76 | 2.04                    | 2.747 (3)    | 157           |     |
|                                     | (1)  |                         | (**)         |               |     |

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 1, -y + 2, -z; (iii)  $-x + \frac{3}{2}, y + 1, -z + \frac{1}{2}$ ; (iv) x, y - 1, z.

The non-standard P2/n setting of the space group was chosen in preference to P2/c to avoid a unit cell with a very obtuse  $\beta$  angle of 133.6°. The water H atoms were found in a difference map and refined as riding in their as-found relative positions (Table 2). H atoms bonded to C and N atoms were placed in idealized positions (C-H = 0.98-1.00 Å and N-H = 0.91 Å) and refined as riding, allowing for free rotation of the rigid  $-XH_3$  (X = C3, N1 and N2) groups. The constraint  $U_{iso}(H) = 1.2U_{eq}(carrier)$  or  $U_{iso}(H) =$  $1.2U_{eq}(methyl carrier)$  was applied as appropriate.

Data collection: *COLLECT* (Nonius, 1999); cell refinement: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT*; data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

We thank the EPSRC National Crystallography Service (University of Southampton, England) for the data collection.

#### References

Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Demir, S., Yilmaz, V. T. & Harrison, W. T. A. (2003). Acta Cryst. E59, 0907– 0909.
- Farrugia, L. J. (1997). J. App. Cryst. 30, 565.
- Harrison, W. T. A. (2003). Acta Cryst. E59, o1267-o1269.
- Lee, C. & Harrison, W. T. A. (2003a). Acta Cryst. E59, m739-m741.
- Lee, C. & Harrison, W. T. A. (2003b). Acta Cryst. E59, m959-m960.
- Lee, C. & Harrison, W. T. A. (2003c). Acta Cryst. E59, m1151-m1153.
- Nonius (1999). COLLECT. Nonius, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. London: Academic Press.
- Ritchie, L. K. & Harrison, W. T. A. (2003). Acta Cryst. E59, o1296-o1298.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wilkinson, H. S. & Harrison, W. T. A. (2004). Acta Cryst. E60, m1359-m1361.